3^2x-1=1/243

Simple and best practice solution for 3^2x-1=1/243 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3^2x-1=1/243 equation:



3^2x-1=1/243
We move all terms to the left:
3^2x-1-(1/243)=0
We add all the numbers together, and all the variables
3^2x-1-(+1/243)=0
We get rid of parentheses
3^2x-1-1/243=0
We multiply all the terms by the denominator
3^2x*243-1-1*243=0
We add all the numbers together, and all the variables
3^2x*243-244=0
Wy multiply elements
729x^2-244=0
a = 729; b = 0; c = -244;
Δ = b2-4ac
Δ = 02-4·729·(-244)
Δ = 711504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{711504}=\sqrt{11664*61}=\sqrt{11664}*\sqrt{61}=108\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-108\sqrt{61}}{2*729}=\frac{0-108\sqrt{61}}{1458} =-\frac{108\sqrt{61}}{1458} =-\frac{2\sqrt{61}}{27} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+108\sqrt{61}}{2*729}=\frac{0+108\sqrt{61}}{1458} =\frac{108\sqrt{61}}{1458} =\frac{2\sqrt{61}}{27} $

See similar equations:

| 4y-8=22-y, | | 3b+15.75=42 | | x²+12x+1=0 | | X=2z-1 | | 10=2(3+w) | | -2=-2(3+y) | | t+15/5=-5 | | 4x+3x+2x=72,000 | | 1=t+4 | | 2x-3=7x+1 | | 7x+0.2•(x-5)+13=7x-0.2•(x-6)+11.2 | | 7y-56+37-0.25y=6.75y-19 | | 12z-4+3z-15z=15z+66-50z | | 5x–1=11 | | 1. 9x+13=4 | | x+3=16-5 | | 11x+8=8x+53 | | 5x-3=34+8 | | x+2(4)=7-3x | | x(x–4)–6x+24=0 | | )x(x–4)–6x+24=0 | | -4(3x+2)=40+6x | | 6s+45=201 | | 3•(17+8x)=70x–87 | | 3÷j=4.5 | | 16-6y+4y=13 | | x5=x4+6×3 | | (4x+5)^2=45 | | -2+4y+9=9 | | x²+70x-3000=0 | | 8+6x-2=18 | | 6(9x-8)=29 |

Equations solver categories